Lecture 7: L-functions and Hecke operators

Gabriel Dospinescu

CNRS, ENS Lyon

Goal

(I) In a first part we will prove that many interesting L-functions attached to modular forms have analytic continuation and functional equations, by pushing the argument for the meromorphic continuation of real analytic Eisenstein series (for $\mathbb{S L}_{2}(\mathbb{Z})$) to its limits.

Goal

(I) In a first part we will prove that many interesting L-functions attached to modular forms have analytic continuation and functional equations, by pushing the argument for the meromorphic continuation of real analytic Eisenstein series (for $\mathbb{S L}_{2}(\mathbb{Z})$) to its limits.
(II) In a second part we introduce a class of operators on spaces of modular forms, which play a fundamental role and allow one to isolate a class of very nice modular forms, whose L-functions behave like those of Dirichlet characters, for instance they have interesting Euler product factorisations. These modular forms have amazing arithmetic properties.

Goal

(I) We will work at level $\Gamma=\Gamma_{0}(N)$, for some positive integer N, where
$\Gamma_{0}(N)=\left\{\left.\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{S L}_{2}(\mathbb{Z}) \right\rvert\, \gamma \equiv\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \quad(\bmod N)\right\}$.
For $N=1$ we have $\Gamma_{0}(N)=\mathbb{S L}_{2}(\mathbb{Z})$, and we call this simply $\Gamma(1)$.

Goal

(I) We will work at level $\Gamma=\Gamma_{0}(N)$, for some positive integer N, where
$\Gamma_{0}(N)=\left\{\left.\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{S L}_{2}(\mathbb{Z}) \right\rvert\, \gamma \equiv\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \quad(\bmod N)\right\}$.
For $N=1$ we have $\Gamma_{0}(N)=\mathbb{S L}_{2}(\mathbb{Z})$, and we call this simply $\Gamma(1)$.
(II) Note that $\Gamma_{0}(N)$ has finite index in $\Gamma(1)$, more precisely

$$
\left[\Gamma(1): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+p^{-1}\right)
$$

Goal

(I) We will work at level $\Gamma=\Gamma_{0}(N)$, for some positive integer N, where
$\Gamma_{0}(N)=\left\{\left.\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{S L}_{2}(\mathbb{Z}) \right\rvert\, \gamma \equiv\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \quad(\bmod N)\right\}$.
For $N=1$ we have $\Gamma_{0}(N)=\mathbb{S L}_{2}(\mathbb{Z})$, and we call this simply $\Gamma(1)$.
(II) Note that $\Gamma_{0}(N)$ has finite index in $\Gamma(1)$, more precisely

$$
\left[\Gamma(1): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+p^{-1}\right)
$$

(III) We let $M_{k}(N)=M_{k}\left(\Gamma_{0}(N)\right)$ and $S_{k}(N)=S_{k}\left(\Gamma_{0}(N)\right)$. If $N=1$ we simply write M_{k}, S_{k}.

Mellin transform

(I) The general machinery for analytic continuations and functional equations is quite simple. Let $\Phi \in C^{\infty}((0, \infty))$ and $c, v>0$ be such that

$$
\Phi(t)=O\left(e^{-c t}\right), t \rightarrow \infty, \Phi(t)=O\left(t^{-v-1}\right), t \rightarrow 0
$$

The Mellin transform of Φ is defined by

$$
M \Phi(s)=\int_{0}^{\infty} \Phi(t) t^{s} \frac{d t}{t}
$$

It is holomorphic in $\operatorname{Re}(s)>1+v$.

Mellin transform

(I) The general machinery for analytic continuations and functional equations is quite simple. Let $\Phi \in C^{\infty}((0, \infty))$ and $c, v>0$ be such that

$$
\Phi(t)=O\left(e^{-c t}\right), t \rightarrow \infty, \Phi(t)=O\left(t^{-v-1}\right), t \rightarrow 0
$$

The Mellin transform of Φ is defined by

$$
M \Phi(s)=\int_{0}^{\infty} \Phi(t) t^{s} \frac{d t}{t}
$$

It is holomorphic in $\operatorname{Re}(s)>1+v$.
(II) In practice we take $\Phi(t)=\sum_{n \geq 1} a_{n} e^{-n c t}$ with $c>0$, $a_{n}=O\left(n^{v}\right)$. In this case we have the crucial identity

$$
\begin{gathered}
M \Phi(s)=c^{-s} \Gamma(s) L(s), \operatorname{Re}(s)>1+v \\
L(s):=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}, \Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}=M(-\exp)(s) .
\end{gathered}
$$

Mellin transform

(I) In practice the interesting function is $s \rightarrow L(s)$, and the previous identity (plus classical properties of Γ, for instance $1 / \Gamma$ extends to a holomorphic function on \mathbb{C}, vanishing at negative integers) allows one to study $L(s)$ via $M \Phi(s)$.

Mellin transform

(I) In practice the interesting function is $s \rightarrow L(s)$, and the previous identity (plus classical properties of Γ, for instance $1 / \Gamma$ extends to a holomorphic function on \mathbb{C}, vanishing at negative integers) allows one to study $L(s)$ via $M \Phi(s)$.
(II) The Mellin transform is a version of Fourier transform, thus one expects to recover Φ from $M \Phi$. This can be done, thanks to:

Theorem For all $c>1+v$ we have

$$
\Phi(t)=\frac{1}{2 i \pi} \int_{\operatorname{Re}(s)=c} M \Phi(s) t^{-s} d s
$$

Mellin transform

(I) The proof is simple: letting $f(x)=e^{c x} \Phi\left(e^{x}\right)$, we have

$$
\begin{gathered}
M \Phi(c+i u)=\int_{0}^{\infty} \Phi(t) t^{c+i u} \frac{d t}{t}= \\
\int_{\mathbb{R}} \Phi\left(e^{x}\right) e^{x(c+i u)} d x=\int_{\mathbb{R}} f(x) e^{i x u} d x
\end{gathered}
$$

Fourier inversion then finishes the proof.

Mellin transform

(I) The proof is simple: letting $f(x)=e^{c x} \Phi\left(e^{x}\right)$, we have

$$
\begin{gathered}
M \Phi(c+i u)=\int_{0}^{\infty} \Phi(t) t^{c+i u} \frac{d t}{t}= \\
\int_{\mathbb{R}} \Phi\left(e^{x}\right) e^{x(c+i u)} d x=\int_{\mathbb{R}} f(x) e^{i x u} d x
\end{gathered}
$$

Fourier inversion then finishes the proof.
(II) For many Φ one can extend $M \Phi$ meromorphically to \mathbb{C} using the same trick as the one used for Eisenstein series in the previous lecture:

$$
\begin{aligned}
M \Phi(s) & =\int_{0}^{1} \varphi(t) t^{s} \frac{d t}{t}+\int_{1}^{\infty} \varphi(t) t^{s} \frac{d t}{t}= \\
= & \int_{1}^{\infty}\left(\varphi\left(t^{-1}\right) t^{-s}+\varphi(t) t^{s}\right) \frac{d t}{t}
\end{aligned}
$$

Mellin transform

(I) If $\varphi\left(t^{-1}\right)$ behaves well enough the integral converges absolutely for all $s \in \mathbb{C}$ and the resulting function is holomorphic in s. If there are $k \in \mathbb{R}, c \in\{-1,1\}$ such that $\varphi\left(t^{-1}\right)=c t^{k} \varphi(t)$, then the integral expression above gives the functional equation

$$
M \Phi(k-s)=c M \Phi(s)
$$

This will be our main source of analytic continuation and functional equations!

L-functions of modular forms

(I) For instance, take $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}$. The L-function of f

$$
L(s)=L(f, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

and the completed L-function of f

$$
\Lambda(f, s):=(2 \pi)^{-s} \Gamma(s) L(f, s)
$$

are of fundamental importance.

L-functions of modular forms

(I) For instance, take $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}$. The L-function of f

$$
L(s)=L(f, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

and the completed L-function of f

$$
\Lambda(f, s):=(2 \pi)^{-s} \Gamma(s) L(f, s)
$$

are of fundamental importance.
(II) Note that by the above discussion $\Lambda(f, \bullet)$ is simply the Mellin transform of

$$
\Phi(t)=f(i t)=\sum_{n \geq 1} a_{n} e^{-2 \pi n t}
$$

Since $f(-1 / z)=z^{k} f(z)$, we have

$$
\Phi(1 / t)=i^{k} t^{k} \Phi(t)=(-1)^{k / 2} t^{k} \Phi(t)
$$

L-functions of modular forms

(I) We say that a function F is EBV if F is entire (i.e. holomorphic on \mathbb{C}) and bounded on any vertical strip $a \leq \operatorname{Re}(s) \leq b$. The previous discussion gives:

Theorem (Hecke) If $f \in S_{k}$ then $s \rightarrow \Lambda(f, s)$ extends to a EBV function satisfying the functional equation

$$
\Lambda(k-s)=(-1)^{k / 2} \Lambda(s)
$$

Thus $L(f, \bullet)$ extends to an entire function, having (trivial) zeros at integers $n \leq 0$.

The values $L(f, n)$ for $1 \leq n \leq k-1$ have very interesting arithmetic signification (at least for a class of modular forms we'll encounter later on, called eigenforms).

L-functions of modular forms

(I) Amazingly, the above properties of the L-function characterise elements of S_{k}.

Theorem (Hecke's converse theorem) Let $f=\sum_{n \geq 1} a_{n} q^{n}$ be a holomorphic function on \mathscr{H} such that $a_{n}=O\left(n^{\bar{v}}\right)$ for some $v>0$. If

$$
\Lambda(s):=(2 \pi)^{-s} \Gamma(s) \sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

extends to an EBV function satisfying

$$
\Lambda(k-s)=(-1)^{k / 2} \Lambda(s)
$$

then $f \in S_{k}$.

L-functions of modular forms

(I) Let $\Phi(t)=f(i t)$, we need to show that $\Phi(1 / t)=i^{k} t^{k} \Phi(t)$, since this implies $f(-1 / z)=z^{k} f(z)$. As above, we have $\Lambda(s)=M \Phi(s)$.

L-functions of modular forms

(I) Let $\Phi(t)=f(i t)$, we need to show that $\Phi(1 / t)=i^{k} t^{k} \Phi(t)$, since this implies $f(-1 / z)=z^{k} f(z)$. As above, we have $\Lambda(s)=M \Phi(s)$.
(II) The inversion formula for Mellin transforms gives for $t>0, \sigma>1+v$

$$
\Phi(t)=\frac{1}{2 i \pi} \int_{\operatorname{Re}(s)=\sigma} \Lambda(s) t^{-s} d s
$$

and similarly, using the functional equation of Λ we obtain

$$
(i t)^{-k} \Phi(1 / t)=\frac{1}{2 i \pi} \int_{\operatorname{Re}(s)=k-\sigma} \Lambda(s) t^{-s} d s
$$

L-functions of modular forms

(I) To show that these two integrals are the same, integrate the holomorphic map $F(s)=\Lambda(s) t^{-s}$ over the rectangle with vertices $(\sigma, T),(k-\sigma, T),(k-\sigma,-T),(\sigma,-T)$ with T large enough. It suffices to prove that

$$
\lim _{|T| \rightarrow \infty} \int_{k-\sigma}^{\sigma} F(u+i T) d u=0
$$

L-functions of modular forms

(I) To show that these two integrals are the same, integrate the holomorphic map $F(s)=\Lambda(s) t^{-s}$ over the rectangle with vertices $(\sigma, T),(k-\sigma, T),(k-\sigma,-T),(\sigma,-T)$ with T large enough. It suffices to prove that

$$
\lim _{|T| \rightarrow \infty} \int_{k-\sigma}^{\sigma} F(u+i T) d u=0
$$

(II) This is an application of the Phragmen-Lindelf principle in complex analysis, which implies that $|\Lambda(s)|=O(1 /|s|)$ uniformly in $k-\sigma \leq \operatorname{Re}(s) \leq \sigma$.

L-functions of modular forms

(I) Things are quite a bit more complicated if $N>1$. The matrix $\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$ normalizes $\Gamma_{0}(N)$ and we obtain an operator W_{N} (called the Fricke involution) on $M_{k}(N)$, preserving $S_{k}(N)$ and satisfying

$$
W_{N} f(z)=N^{-k / 2} z^{-k} f\left(\frac{-1}{N z}\right) .
$$

The same argument gives
Theorem If $f \in S_{k}(N)$, then

$$
\Lambda(f, s):=N^{s / 2} \pi^{-s} \Gamma(s) L(f, s)
$$

extends to an EBV function satisfying

$$
\Lambda(f, s)=i^{k} \Lambda\left(W_{N} f, k-s\right)
$$

L-functions of modular forms

(I) For the interesting modular forms we'll see later on (called primitive forms) $W_{N} f=\varepsilon f$ for some $\varepsilon \in\{-1,1\}$ and so for these we get a nice functional equation.

L-functions of modular forms

(I) For the interesting modular forms we'll see later on (called primitive forms) $W_{N} f=\varepsilon f$ for some $\varepsilon \in\{-1,1\}$ and so for these we get a nice functional equation.
(II) There is also an analogue of Hecke's converse theorem, but it is much more delicate to state and to prove. This is called Weil's converse theorem, and essentially characterises cusp forms in terms of L-functions of various twists

$$
f \otimes \chi:=\sum_{n \geq 1} a_{n} \chi(n) q^{n}
$$

of f by Dirichlet characters $\chi \bmod D$, for various D. The precise statement is very technical and skipped.

The Petersson inner product

(I) We have already seen that cuspidal automorphic forms of level Γ for $G=\mathbb{S L}_{2}(\mathbb{R})$ are in $L^{2}(\Gamma \backslash G)$, and that any $f \in S_{k}(\Gamma)$ (with $k \geq 1$) gives rise to a cuspidal automorphic form of level Γ for G.

The Petersson inner product

(I) We have already seen that cuspidal automorphic forms of level Γ for $G=\mathbb{S L}_{2}(\mathbb{R})$ are in $L^{2}(\Gamma \backslash G)$, and that any $f \in S_{k}(\Gamma)$ (with $k \geq 1$) gives rise to a cuspidal automorphic form of level Γ for G.
(II) Say Γ has finite index in $\Gamma(1)$ and, for simplicity, that $-1 \in \Gamma$. We get an embedding $S_{k}(\Gamma) \subset L^{2}(\Gamma \backslash G)$, inducing a Hilbert structure on the (finite-dimensional!) vector space $S_{k}(\Gamma)$. Unwinding definitions, we see that up to a constant this inner product can be expressed directly as

$$
\langle f, g\rangle=\frac{1}{[\Gamma(1): \Gamma]} \int_{\Gamma \backslash \mathscr{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z) .
$$

It is independent of the choice of Γ for which both f, g are modular of level Γ and it will play a major role in the sequel!

The Petersson inner product

(I) More precisely, if F_{f}, F_{g} are the automorphic forms attached to $f, g \in S_{k}(\Gamma)$ (recall that $\left.F_{f}(x)=f(x . i) \mu(x, i)^{-k}\right)$

$$
\begin{gathered}
\left\langle F_{f}, F_{g}\right\rangle_{L^{2}(\Gamma \backslash G)}=\int_{\Gamma \backslash G} F_{f}(x) \overline{F_{g}(x)} d x= \\
\int_{\Gamma \backslash G} f(x . i) \overline{g(x . i)}|\mu(x, i)|^{-2 k} d x=\int_{\Gamma \backslash G} f(x . i) \overline{g(x . i)} \operatorname{Im}(x . i)^{k} d x \\
=\int_{\Gamma \backslash \mathscr{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z)=[\Gamma(1): \Gamma]\langle f, g\rangle .
\end{gathered}
$$

The next-to-last equality follows by K-invariance on the right of the map $x \rightarrow f(x . i) \overline{g(x . i)} \operatorname{Im}(x . i)^{k}$.

The Petersson inner product

(I) More precisely, if F_{f}, F_{g} are the automorphic forms attached to $f, g \in S_{k}(\Gamma)$ (recall that $\left.F_{f}(x)=f(x . i) \mu(x, i)^{-k}\right)$

$$
\begin{gathered}
\left\langle F_{f}, F_{g}\right\rangle_{L^{2}(\Gamma \backslash G)}=\int_{\Gamma \backslash G} F_{f}(x) \overline{F_{g}(x)} d x= \\
\int_{\Gamma \backslash G} f(x . i) \overline{g(x . i)}|\mu(x, i)|^{-2 k} d x=\int_{\Gamma \backslash G} f(x . i) \overline{g(x . i)} \operatorname{Im}(x . i)^{k} d x \\
=\int_{\Gamma \backslash \mathscr{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d \mu(z)=[\Gamma(1): \Gamma]\langle f, g\rangle .
\end{gathered}
$$

The next-to-last equality follows by K-invariance on the right of the map $x \rightarrow f(x . i) \overline{g(x . i)} \operatorname{Im}(x . i)^{k}$.
(II) The independence of $\langle f, g\rangle$ with respect to Γ (for which both f, g are modular) is then trivial.

The Rankin-Selberg method

(I) Let $f, g \in S_{k}(\Gamma)$ and let

$$
L(f \otimes \bar{g}, s)=\zeta(2 s-2 k+2) \sum_{n \geq 1} \frac{a_{n} \overline{b_{n}}}{n^{s}} .
$$

This is called the Rankin-Selberg convolution of $L(f, s)$ and $L(g, s)$. It is holomorphic in $\operatorname{Re}(s)>k+1$ by the trivial bound.

Theorem (Rankin-Selberg) The series defining $L(f \otimes \bar{g}, s)$ converges absolutely if $\operatorname{Re}(s)>k$ and $L(f \otimes \bar{g}, \bullet)$ extends meromorphically to \mathbb{C}. This function may have a simple pole at $s=k$, where the residue is

$$
\operatorname{Res}_{s=k} L(f \otimes \bar{g}, \bullet)=\frac{3}{\pi} \frac{(4 \pi)^{k}}{(k-1)!}\langle f, g\rangle .
$$

The Rankin-Selberg method

(I) The convergence in the theorem is highly nontrivial. Using a hard theorem of Landau from analytic number theory, Rankin deduced that for $f \in S_{k}\left(\Gamma_{0}(N)\right)$ we have

$$
\sum_{n \leq x}\left|a_{n}(f)\right|^{2}=\frac{3}{\pi} \frac{(4 \pi)^{k}}{(k-1)!}\langle f, f\rangle x^{k}+O\left(x^{k-\frac{2}{5}}\right)
$$

and

$$
a_{n}(f)=O\left(n^{\frac{k}{2}-\frac{1}{5}}\right)
$$

The Rankin-Selberg method

(I) The convergence in the theorem is highly nontrivial. Using a hard theorem of Landau from analytic number theory, Rankin deduced that for $f \in S_{k}\left(\Gamma_{0}(N)\right)$ we have

$$
\sum_{n \leq x}\left|a_{n}(f)\right|^{2}=\frac{3}{\pi} \frac{(4 \pi)^{k}}{(k-1)!}\langle f, f\rangle x^{k}+O\left(x^{k-\frac{2}{5}}\right)
$$

and

$$
a_{n}(f)=O\left(n^{\frac{k}{2}-\frac{1}{5}}\right)
$$

(II) Again, we have a functional equation:

$$
\Lambda(f \otimes \bar{g}, s)=\Lambda(f \otimes \bar{g}, 2 k-1-s)
$$

where

$$
\Lambda(f \otimes \bar{g}, s)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+1) L(f \otimes \bar{g}, s)
$$

The Rankin-Selberg method

(I) The proof of the theorem crucially relies on real analytic Eisenstein series (which had a different name in lecture 6)

$$
E(s, z)=\frac{1}{2} \sum_{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{y^{s}}{|c z+d|^{2 s}}=\frac{\zeta(2 s)}{2} \sum_{\operatorname{gcd}(c, d)=1} \frac{y^{s}}{|c z+d|^{2 s}}
$$

The Rankin-Selberg method

(I) The proof of the theorem crucially relies on real analytic Eisenstein series (which had a different name in lecture 6)

$$
E(s, z)=\frac{1}{2} \sum_{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{y^{s}}{|c z+d|^{2 s}}=\frac{\zeta(2 s)}{2} \sum_{\operatorname{gcd}(c, d)=1} \frac{y^{s}}{|c z+d|^{2 s}}
$$

(II) The version at level $\Gamma:=\Gamma_{0}(N)$ (and the cusp ∞) is

$$
E_{N}(s, z)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \frac{y^{s}}{|c z+d|^{2 s}}=\frac{1}{2} \sum_{\operatorname{gcd}(c, d)=1, N \mid c} \frac{y^{s}}{|c z+d|^{2 s}}
$$

The Mobius inversion formula allows one to relate this to $E(s, z)$.

The Rankin-Selberg method

(I) More precisely, using the Mobius function we can rewrite (details left as an exercise)

$$
\begin{aligned}
& E_{N}(s, z)=\frac{1}{2} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\} \\
N \mid c}} \sum_{e \mid \operatorname{gcd}(c, d)} \mu(e) \frac{y^{s}}{|c z+d|^{2 s}} \\
& =\sum_{d \mid N} E(s, N z / d)(N / d)^{-s} \sum_{\operatorname{gcd}(N, e)=d} \mu(e) e^{-2 s}= \\
& =\frac{1}{N^{s} \prod_{p \mid N}\left(1-p^{-2 s}\right) \zeta(2 s)} \sum_{d \mid N} \frac{\mu(d)}{d^{s}} E\left(s, \frac{N z}{d}\right) .
\end{aligned}
$$

The Rankin-Selberg method

(I) More precisely, using the Mobius function we can rewrite (details left as an exercise)

$$
\begin{aligned}
& E_{N}(s, z)=\frac{1}{2} \sum_{\substack{(c, d) \in \mathbb{Z}^{2} \backslash\{(0,0)\} \\
N \mid c}} \sum_{e \mid \operatorname{gcd}(c, d)} \mu(e) \frac{y^{s}}{|c z+d|^{2 s}} \\
& =\sum_{d \mid N} E(s, N z / d)(N / d)^{-s} \sum_{\operatorname{gcd}(N, e)=d} \mu(e) e^{-2 s}= \\
& =\frac{1}{N^{s} \prod_{p \mid N}\left(1-p^{-2 s}\right) \zeta(2 s)} \sum_{d \mid N} \frac{\mu(d)}{d^{s}} E\left(s, \frac{N z}{d}\right) .
\end{aligned}
$$

(II) The properties of $E(s, z)$ established in the previous lecture then ensure that E_{N} also extends meromorphically to \mathbb{C}.

The Rankin-Selberg method

(I) More precisely, letting

$$
\Lambda(s):=\pi^{-s} \Gamma(s) \zeta(2 s),
$$

the map $s \rightarrow \Lambda(s) E_{N}(s)$ has a unique pole at 1 in the region $\operatorname{Re}(s) \geq 1 / 2$, this pole is simple with residue $\frac{1}{2[\Gamma(1): \Gamma]}$. Also, it satisfies a functional equation.

The Rankin-Selberg method

(I) More precisely, letting

$$
\Lambda(s):=\pi^{-s} \Gamma(s) \zeta(2 s)
$$

the map $s \rightarrow \Lambda(s) E_{N}(s)$ has a unique pole at 1 in the region $\operatorname{Re}(s) \geq 1 / 2$, this pole is simple with residue $\frac{1}{2[\Gamma(1): \Gamma]}$. Also, it satisfies a functional equation.
(II) It follows that E_{N} has a single pole in $\operatorname{Re}(s) \geq 1 / 2$, at $s=1$, and this pole is simple, with residue $\frac{1}{3 \pi[\Gamma(1): \Gamma]}$. Everything in the theorem can be easily deduced from the following crucial identity, which holds for $\operatorname{Re}(s)>1$:

$$
\frac{\Gamma(s+k-1)}{(4 \pi)^{s+k-1}\left[\Gamma(1): \Gamma_{0}(N)\right]} \sum_{n \geq 1} \frac{a_{n} \overline{b_{n}}}{n^{s}}=\left\langle E_{N}(s) f, g\right\rangle,
$$

and the properties of $E_{N}(s)$ explained above.

The Rankin-Selberg method

(I) To prove the identity, we use as always the unfolding trick, using that $\varphi(z)=f(z) \overline{g(z)} \operatorname{Im}(z)^{k}$ is Γ-invariant

$$
\begin{aligned}
& \left\langle E_{N}(s) f, g\right\rangle=\frac{1}{[\Gamma(1): \Gamma]} \int_{\Gamma \backslash \mathscr{H}} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \operatorname{Im}(\gamma z)^{s} \varphi(\gamma z) d \mu(z) \\
& =\frac{1}{[\Gamma(1): \Gamma]} \int_{\Gamma_{\infty} \backslash \mathscr{H}} \operatorname{Im}(z)^{s} \varphi(z) d \mu(z)= \\
& =\frac{1}{[\Gamma(1): \Gamma]} \int_{0}^{\infty}\left(\int_{0}^{1} f(x+i y) \overline{g(x+i y)} d x\right) y^{k+s-1} \frac{d y}{y} .
\end{aligned}
$$

The Rankin-Selberg method

(I) But a simple calculation shows that

$$
\int_{0}^{1} f(x+i y) \overline{g(x+i y)} d x=\sum_{n \geq 1} a_{n} \overline{b_{n}} e^{-4 \pi n y}
$$

and the result follows by standard properties of the Mellin transform. More precisely,

$$
\begin{gathered}
f(x+i y) \overline{g(x+i y)}=\left(\sum a_{n} e^{-2 \pi n y} e^{2 i \pi n x}\right)\left(\sum \overline{b_{m}} e^{-2 \pi m y} e^{-2 i \pi m x}\right) \\
=\sum_{m, n} a_{n} \overline{b_{m}} e^{-2 \pi(m+n) y} e^{2 i \pi(n-m) x}
\end{gathered}
$$

and the previous identity follows immediately.

Hecke operators

(I) Ramanujan conjectured the following amazing identity for $\Delta=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}$

$$
L(\Delta, s)=\prod_{p} \frac{1}{1-\tau(p) p^{-s}+p^{11-2 s}}
$$

i.e. an Euler product factorization of the L-function of Δ, just as for Dirichlet characters!

Hecke operators

(I) Ramanujan conjectured the following amazing identity for $\Delta=\sum_{n \geq 1} \tau(n) q^{n} \in S_{12}$

$$
L(\Delta, s)=\prod_{p} \frac{1}{1-\tau(p) p^{-s}+p^{11-2 s}}
$$

i.e. an Euler product factorization of the L-function of Δ, just as for Dirichlet characters!
(II) Hecke proved this result by introducing an extremely important class of operators on $M_{k}(N)$ and $S_{k}(N)$, called Hecke operators. Their definition looks very miraculous, and it is not easy at this stage to motivate it...

Hecke operators

(I) The spaces $M_{k}(N), S_{k}(N)$ turn out to be modules over the gigantic polynomial ring

$$
\mathbb{T}_{N}=\mathbb{Z}\left[T_{p} \mid p \in\{2,3,5,7,11, \ldots\}\right]
$$

in infinitely many variables T_{p}, indexed by prime numbers.
Let $\mathbb{T}_{N}^{(N)}$ be the subring of \mathbb{T}_{N} generated by T_{p} with $\operatorname{gcd}(p, N)=1$.

Hecke operators

(I) The spaces $M_{k}(N), S_{k}(N)$ turn out to be modules over the gigantic polynomial ring

$$
\mathbb{T}_{N}=\mathbb{Z}\left[T_{p} \mid p \in\{2,3,5,7,11, \ldots\}\right]
$$

in infinitely many variables T_{p}, indexed by prime numbers. Let $\mathbb{T}_{N}^{(N)}$ be the subring of \mathbb{T}_{N} generated by T_{p} with $\operatorname{gcd}(p, N)=1$.
(II) We call \mathbb{T}_{N} (resp. $\mathbb{T}_{N}^{(N)}$) the universal Hecke algebra of level N (resp. the same away from N).

Hecke operators

(I) What is this module structure? Brutally, we can define the p th Hecke operator T_{p} on $M_{k}(N)$ by

$$
T_{p}(f)(z)=\frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{z+i}{p}\right)+\chi(p) p^{k-1} f(p z)
$$

where $\chi(p)=1$ if p is prime to N and $\chi(p)=0$ if $p \mid N$. Be careful that T_{p} really depends on the level N since $\chi(p)$ depends on N.

Hecke operators

(I) What is this module structure? Brutally, we can define the p th Hecke operator T_{p} on $M_{k}(N)$ by

$$
T_{p}(f)(z)=\frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{z+i}{p}\right)+\chi(p) p^{k-1} f(p z)
$$

where $\chi(p)=1$ if p is prime to N and $\chi(p)=0$ if $p \mid N$. Be careful that T_{p} really depends on the level N since $\chi(p)$ depends on N.
(II) It is absolutely not obvious that $T_{p}(f) \in M_{k}(N)$ and T_{p} sends $S_{k}(N)$ into $S_{k}(N)$, etc, see the slides at the end of the lecture for the proof! The various T_{p} 's commute (this is very easy using the formula above).

Hecke operators

(I) One can define a Hecke operator T_{n} on $M_{k}(N)$ and $S_{k}(N)$ by

$$
T_{n}(f)(z)=\frac{1}{n} \sum_{\substack{a d=n, a>0 \\ \operatorname{gcd}(a, N)=1}} a^{k} \sum_{b=0}^{d-1} f\left(\frac{a z+b}{d}\right) .
$$

Again, it is by no means obvious that $T_{n}(f)$ is in $M_{k}(N)$ or $S_{k}(N)$.

Hecke operators

(I) One can define a Hecke operator T_{n} on $M_{k}(N)$ and $S_{k}(N)$ by

$$
T_{n}(f)(z)=\frac{1}{n} \sum_{\substack{a d=n, a>0 \\ \operatorname{gcd}(a, N)=1}} a^{k} \sum_{b=0}^{d-1} f\left(\frac{a z+b}{d}\right) .
$$

Again, it is by no means obvious that $T_{n}(f)$ is in $M_{k}(N)$ or $S_{k}(N)$.
(II) Let $a_{m}(f)$ be the m th Fourier coefficient in the q-expansion of f at ∞. A simple computation gives

$$
a_{m}\left(T_{n}(f)\right)=\sum_{d \mid \operatorname{gcd}(m, n), \operatorname{gcd}(d, N)=1} d^{k-1} a_{\frac{m n}{d^{2}}}(f)=a_{n}\left(T_{m}(f)\right) .
$$

In particular we have the key formula $a_{1}\left(T_{n}(f)\right)=a_{n}(f)$ and

$$
T_{p}(f)=\sum_{n \geq 0} a_{p n}(f) q^{n}+\chi(p) p^{k-1} \sum_{n \geq 0} a_{n}(f) q^{n p}
$$

Hecke operators

(I) Using the above formula in terms of q-expansions, it is not difficult to check that

$$
T_{m} T_{n}=\sum_{d \mid \operatorname{gcd}(m, n), \operatorname{gcd}(d, N)=1} d^{k-1} T_{\frac{m n}{d^{2}}}
$$

in $\operatorname{End}_{\mathbb{C}}\left(M_{k}(N)\right)$, in particular

$$
T_{m} T_{n}=T_{m n} \text { if } \operatorname{gcd}(m, n)=1
$$

Hecke operators

(I) Using the above formula in terms of q-expansions, it is not difficult to check that

$$
T_{m} T_{n}=\sum_{d \mid \operatorname{gcd}(m, n), \operatorname{gcd}(d, N)=1} d^{k-1} T_{\frac{m n}{d^{2}}}
$$

in $\operatorname{End}_{\mathbb{C}}\left(M_{k}(N)\right)$, in particular

$$
T_{m} T_{n}=T_{m n} \text { if } \operatorname{gcd}(m, n)=1
$$

(II) The previous identity is equivalent to the following beautiful equality of Dirichlet series with coefficients in $\operatorname{End}_{\mathbb{C}}\left(M_{k}(N)\right)$

$$
\begin{aligned}
\sum_{n \geq 1} \frac{T_{n}}{n^{s}} & =\prod_{p \mid N} \frac{1}{1-T_{p} p^{-s}} \prod_{p \nmid N}\left(1-T_{p} p^{-s}+p^{k-1-2 s}\right)^{-1} \\
& =\prod_{p}\left(1-T_{p} p^{-s}+\chi(p) p^{k-1-2 s}\right)^{-1}
\end{aligned}
$$

Eigenforms

(I) This identity is at the heart of all Euler factorizations of L-functions of "nice" modular forms.

Eigenforms

(I) This identity is at the heart of all Euler factorizations of L-functions of "nice" modular forms.
(II) We say that $f \in M_{k}(N)$ is a \mathbb{T}_{N}-eigenform if f is an eigenvector of all T_{p}. In this case f gives rise to a morphism of rings

$$
\theta_{f}: \mathbb{T}_{N} \rightarrow \mathbb{C}, T(f)=\theta_{f}(T) f \text { for } T \in \mathbb{T}
$$

An identical discussion applies to $\mathbb{T}_{N}^{(N)}$. Obviously any \mathbb{T}_{N}-eigenform is a $\mathbb{T}_{N}^{(N)}$-eigenform, but the converse fails badly when $N>1$!

Eigenforms

(I) Note that if f is a \mathbb{T}_{N}-eigenform, then writing $T_{n}(f)=\lambda_{n} f$ we have

$$
a_{n}(f)=a_{1}\left(T_{n}(f)\right)=\lambda_{n} a_{1}(f)
$$

and thus $a_{1}(f) \neq 0($ since $f \neq 0)$ and we can normalise f such that $a_{1}(f)=1$, in which case $T_{n}(f)=a_{n} f$ for all n. We say that f is a normalized eigenform in this case.

Eigenforms

(I) Note that if f is a \mathbb{T}_{N}-eigenform, then writing $T_{n}(f)=\lambda_{n} f$ we have

$$
a_{n}(f)=a_{1}\left(T_{n}(f)\right)=\lambda_{n} a_{1}(f)
$$

and thus $a_{1}(f) \neq 0($ since $f \neq 0)$ and we can normalise f such that $a_{1}(f)=1$, in which case $T_{n}(f)=a_{n} f$ for all n. We say that f is a normalized eigenform in this case.
(II) The Dirichlet series identity for the T_{n} 's yields in this case

$$
L(f, s)=\prod_{p} \frac{1}{1-a_{p} p^{-s}+\chi(p) p^{k-1-2 s}}
$$

thus the L-function of a normalized \mathbb{T}_{N}-eigenform has a nice Euler factorization!

Eigenforms

(I) For instance, consider S_{12}. If $f \in S_{12}$, then $f / \Delta \in M_{0}=\mathbb{C}$, thus S_{12} is one-dimensional and Δ is necessarily a normalized \mathbb{T}_{1}-eigenform and we obtain that $L(\Delta, s)$ has an Euler factorisation as conjectured by Ramanujan! In particular, if we write

$$
q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\sum_{n \geq 1} \tau(n) q^{n}
$$

the sequence $\tau(n)$ is multiplicative and

$$
\tau\left(p^{n+1}\right)=\tau(p) \tau\left(p^{n}\right)-p^{11} \tau\left(p^{n-1}\right)
$$

for all primes p and all $n \geq 1$.

Eigenforms

(I) Thus if $f \in S_{k}$ is a \mathbb{T}_{1}-eigenform, and if we factor

$$
X^{2}-a_{p} X+p^{k-1}=\left(X-\alpha_{f, p}\right)\left(X-\beta_{f, p}\right)
$$

then

$$
L(f, s)=\prod_{p} \frac{1}{\left(1-\alpha_{f, p} p^{-s}\right)\left(1-\beta_{f, p} p^{-s}\right)}
$$

Eigenforms

(I) Thus if $f \in S_{k}$ is a \mathbb{T}_{1}-eigenform, and if we factor

$$
X^{2}-a_{p} X+p^{k-1}=\left(X-\alpha_{f, p}\right)\left(X-\beta_{f, p}\right)
$$

then

$$
L(f, s)=\prod_{p} \frac{1}{\left(1-\alpha_{f, p} p^{-s}\right)\left(1-\beta_{f, p} p^{-s}\right)}
$$

(II) If f, g are eigenforms, a long but simple calculation shows that $L(f \otimes \bar{g}, s)$ also has an Euler factorization, with

$$
\begin{gathered}
L_{p}(f \otimes \bar{g}, s)=\frac{1}{\left(1-\alpha_{f, p} \beta_{g, p} p^{-s}\right)\left(1-\alpha_{f, p} \alpha_{g, p} p^{-s}\right)} \\
\qquad \frac{1}{\left(1-\beta_{f, p} \alpha_{g, p} p^{-s}\right)\left(1-\beta_{f, p} \beta_{g, p} p^{-s}\right)}
\end{gathered}
$$

Eigenforms

(I) A fundamental and quite subtle (not formal!) result is that Hecke operators interact well with the Petersson inner product:

Theorem For n prime to N the operator T_{n} is self-adjoint on $S_{k}(N)$, and so is W_{N}. For general n the adjoint of T_{n} is $W_{N}^{-1} T_{n} W_{N}$. In particular, if $\operatorname{gcd}(n, N)=1$ then T_{n} and W_{N} commute.

Eigenforms

(I) A fundamental and quite subtle (not formal!) result is that Hecke operators interact well with the Petersson inner product:

Theorem For n prime to N the operator T_{n} is self-adjoint on $S_{k}(N)$, and so is W_{N}. For general n the adjoint of T_{n} is $W_{N}^{-1} T_{n} W_{N}$. In particular, if $\operatorname{gcd}(n, N)=1$ then T_{n} and W_{N} commute.
(II) The spectral theorem combined with the previous one show that $S_{k}(N)$ has an orthogonal basis consisting of $\mathbb{T}_{N}^{(N)}$ (but not \mathbb{T}_{N})-eigenforms.

Atkin-Lehner theory

(I) Things are however much more subtle for $\mathbb{T}_{N}^{(N)}$-eigenforms: we can no longer assume that $a_{1}(f) \neq 0$, and we have no control at primes dividing N.

Atkin-Lehner theory

(I) Things are however much more subtle for $\mathbb{T}_{N}^{(N)}$-eigenforms: we can no longer assume that $a_{1}(f) \neq 0$, and we have no control at primes dividing N.
(II) If f is a $\mathbb{T}_{N}^{(N)}$-eigenform with $a_{1}(f)=0$, then as above we get $a_{n}(f)=0$ for all n prime to N. The next result is the heart of the Atkin-Lehner theory

Theorem (Atkin-Lehner's main lemma) If $f \in S_{k}(N)$ satisfies $a_{n}(f)=0$ for all n prime to a given integer D, then $f(z)=\sum_{p \mid N} g_{p}(p z)$ for some $g_{p} \in S_{k}(N / p)$.

The converse is trivial! The classical proof is not very enlightening (but only 4 pages long!), while the automorphic proof, while conceptual and enlightening, is quite long.

Atkin-Lehner theory

(I) For each pair (d, M) of positive integers with $d M \mid N$ we have an injective morphism of $\mathbb{T}_{N}^{(N)}$-modules

$$
\iota^{*}=\iota_{d, M}^{*}: S_{k}(M) \rightarrow S_{k}(N), f \rightarrow(z \rightarrow f(d z))
$$

Atkin-Lehner theory

(I) For each pair (d, M) of positive integers with $d M \mid N$ we have an injective morphism of $\mathbb{T}_{N}^{(N)}$-modules

$$
\iota^{*}=\iota_{d, M}^{*}: S_{k}(M) \rightarrow S_{k}(N), f \rightarrow(z \rightarrow f(d z))
$$

(II) In particular, if $d M \mid N$ and $f \in S_{k}(M)$ is a $\mathbb{T}_{M}^{(M)}$-eigenform, then $z \rightarrow f(d z)$ is a $\mathbb{T}_{N}^{(N)}$-eigenform having the same T_{p}-eigenvalue as f for all p prime to N ! Thus $\mathbb{T}_{N}^{(N)}$-eigenspaces can have big dimension, contrary to \mathbb{T}_{N}-eigenspaces.

Atkin-Lehner theory

(I) The old and new subspaces of $S_{k}(N)$ are defined by

$$
S_{k}(N)^{\mathrm{old}}=\sum_{d M \mid N, M \neq N} \iota_{d, M}^{*}\left(S_{k}(M)\right), \quad S_{k}(N)^{\text {new }}=\left(S_{k}(N)^{\text {old }}\right)^{\perp}
$$

Atkin-Lehner theory

(I) The old and new subspaces of $S_{k}(N)$ are defined by

$$
S_{k}(N)^{\text {old }}=\sum_{d M \mid N, M \neq N} \iota_{d, M}^{*}\left(S_{k}(M)\right), \quad S_{k}(N)^{\text {new }}=\left(S_{k}(N)^{\text {old }}\right)^{\perp} .
$$

(II) One can check by direct computation that $S_{k}(N)^{\text {old }}$ is stable under \mathbb{T}_{N} and by the Fricke involution W_{N}. It follows that $S_{k}(N)^{\text {new }}$ is also stable under \mathbb{T}_{N} and W_{N}.

Atkin-Lehner theory

(I) The old and new subspaces of $S_{k}(N)$ are defined by

$$
S_{k}(N)^{\text {old }}=\sum_{d M \mid N, M \neq N} \iota_{d, M}^{*}\left(S_{k}(M)\right), \quad S_{k}(N)^{\text {new }}=\left(S_{k}(N)^{\text {old }}\right)^{\perp} .
$$

(II) One can check by direct computation that $S_{k}(N)^{\text {old }}$ is stable under \mathbb{T}_{N} and by the Fricke involution W_{N}. It follows that $S_{k}(N)^{\text {new }}$ is also stable under \mathbb{T}_{N} and W_{N}.
(III) The previous deep theorem ensures that whenever $f \in S_{k}(N)^{\text {new }}$ is a $\mathbb{T}^{(N)}$-eigenform, we necessarily have $a_{1}(f) \neq 0$, thus we can normalise $a_{1}(f)=1$. We call such f a newform or primitive form.

Atkin-Lehner theory

(I) We can now state the main results of Atkin-Lehner theory.

Theorem (Atkin-Lehner)
a) (multiplicity one) $\mathbb{T}_{N}^{(N)}$-eigenspaces in $S_{k}(N)^{\text {new }}$ are one-dimensional and generated by primitive forms.
b) Each primitive form is a \mathbb{T}_{N}-eigenform and an eigenvector of W_{N}, thus $L(f, s)$ has an Euler factorization and $\Lambda(f, s)$ has a nice functional equation.
c) $S_{k}(N)^{\text {new }}$ has a basis consisting of primitive forms.

One also gets a decomposition of $\mathbb{T}_{N}^{(N)}$-modules

$$
S_{k}(N)=\bigoplus_{d M \mid N} \iota_{d, M}^{*}\left(S_{k}(M)^{\text {new }}\right) \simeq \bigoplus_{d M \mid N} S_{k}(M)^{\text {new }}
$$

Atkin-Lehner theory

(I) The proof of the following deep and beautiful strong multiplicity one theorem crucially uses L-functions and estimates on the growth of the coefficients of cusp forms obtained via Rankin-Selberg:

Theorem (Atkin-Lehner) If $f \in S_{k}(M), g \in S_{k}(N)$ are primitive forms with $a_{p}(f)=a_{p}(g)$ for all but finitely many primes p, then $M=N$ and $f=g$.

Two amazing theorems

(I) Here is the first amazing theorem:

Theorem (Shimura) If $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}(N)$ is primitive, then

$$
\mathbb{Q}(f):=\mathbb{Q}\left(a_{1}, a_{2}, \ldots\right)
$$

is a totally real number field in which a_{n} are algebraic integers. Moreover, for any $\sigma \in \operatorname{Aut}(\mathbb{C})$ the holomorphic function $f^{\sigma}=\sum_{n \geq 1} \sigma\left(a_{n}\right) q^{n}$ is a primitive form in $S_{k}(N)$.

This is not too hard for $N=1$: in this case if $d=\operatorname{dim} M_{k}$ one easily checks that $\Delta^{i} E_{4}^{3(d-1-i)} E_{k-12 d+12}$ for $0 \leq i<d$ form a basis of M_{k} and these forms have integer Fourier coefficients. Using them, one checks that the subspace $M_{k}(\mathbb{Z})$ of M_{k} of forms with integer q-expansions is a lattice in M_{k}, clearly stable under Hecke operators, and the result follows easily.

Two amazing theorems

(I) And here is one jewel of mathematics:

Theorem (Shimura, Deligne, Deligne-Serre, Ribet) Let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}(N)$ be a primitive form and let λ be a place of $K=\mathbb{Q}_{f}$ above some prime number ℓ. There is a continuous irreducible representation

$$
\rho_{f, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{G}_{2}\left(K_{\lambda}\right)
$$

such that for all primes p not dividing ℓN the representation $\rho_{f, \lambda}$ is trivial on the inertia group at p and

$$
\operatorname{det}\left(X-\rho_{f, \lambda}\left(\operatorname{Frob}_{p}\right)\right)=X^{2}-a_{p} X+p^{k-1}
$$

Moreover, the Ramanujan-Petersson conjecture holds:

$$
\left|a_{p}\right| \leq 2 p^{\frac{k-1}{2}}
$$

Hecke operators: where from?

(I) The mechanism underlying the construction of Hecke operators is very general, but quite abstract. Suppose that G is a group acting A-linearly on the right on some A-module M, where A is a commutative ring.

Hecke operators: where from?

(I) The mechanism underlying the construction of Hecke operators is very general, but quite abstract. Suppose that G is a group acting A-linearly on the right on some A-module M, where A is a commutative ring.
(II) Let Γ be a subgroup of G with the property that $\Gamma \backslash \Gamma g \Gamma$ is a finite set for all $g \in G$. This is equivalent to saying that $\Gamma \cap g^{-1} \Gamma g$ has finite index in Γ for all $g \in G$.

Hecke operators: where from?

(I) The mechanism underlying the construction of Hecke operators is very general, but quite abstract. Suppose that G is a group acting A-linearly on the right on some A-module M, where A is a commutative ring.
(II) Let Γ be a subgroup of G with the property that $\Gamma \backslash \Gamma g \Gamma$ is a finite set for all $g \in G$. This is equivalent to saying that $\Gamma \cap g^{-1} \Gamma g$ has finite index in Γ for all $g \in G$.
(III) Each $g \in G$ gives rise to an operator

$$
\left[\ulcorner g \Gamma]: M^{\ulcorner } \rightarrow M^{\ulcorner }, m \cdot\left[\ulcorner g \Gamma]=\sum_{x \in \Gamma \backslash\ulcorner g \Gamma} m \cdot x,\right.\right.
$$

depending only on $\Gamma g \Gamma$.

Hecke operators: where from?

(I) Let $\mathbb{T}(G, \Gamma)=A[\Gamma \backslash G / \Gamma]$ be the free A-module on double classes $\lceil g \Gamma$ with $g \in G$. We have a natural bijection

$$
\operatorname{Hom}_{A[G]}(A[\Gamma \backslash G], M) \simeq M^{\ulcorner },
$$

in particular taking $M=A[\Gamma \backslash G]$ with the obvious action of G

$$
\operatorname{End}_{A[G]}(A[\Gamma \backslash G]) \simeq A[\Gamma \backslash G]\ulcorner\simeq A[\Gamma \backslash G / \Gamma] .
$$

Hecke operators: where from?

(I) Let $\mathbb{T}(G, \Gamma)=A[\Gamma \backslash G / \Gamma]$ be the free A-module on double classes $\lceil g \Gamma$ with $g \in G$. We have a natural bijection

$$
\operatorname{Hom}_{A[G]}(A[\Gamma \backslash G], M) \simeq M^{\ulcorner },
$$

in particular taking $M=A[\Gamma \backslash G]$ with the obvious action of G

$$
\operatorname{End}_{A[G]}(A[\Gamma \backslash G]) \simeq A[\Gamma \backslash G]^{\Gamma} \simeq A[\Gamma \backslash G / \Gamma] .
$$

(II) Since $\operatorname{End}_{A[G]}(A[\Gamma \backslash G])$ has a natural ring structure, we get one on $\mathbb{T}(G, \Gamma)$, and a $\mathbb{T}(G, \Gamma)$-module structure on $M \Gamma$. This module structure is induced by the operators $[\Gamma g \Gamma]$.

Hecke operators: where from?

(I) An example of such a situation is $G=\mathbb{G L}_{2}(\mathbb{Q})^{+}$and Γ any finite index subgroup of $\Gamma(1)$. We can take $A=\mathbb{C}($ or $\mathbb{Z})$ and (for a fixed k)

$$
M=\bigcup_{\Gamma} M_{k}(\Gamma)
$$

the union being over all finite index subgroups Γ of $\Gamma(1)$.

Hecke operators: where from?

(I) An example of such a situation is $G=\mathbb{G}_{2}(\mathbb{Q})^{+}$and Γ any finite index subgroup of $\Gamma(1)$. We can take $A=\mathbb{C}($ or $\mathbb{Z})$ and (for a fixed k)

$$
M=\bigcup_{\Gamma} M_{k}(\Gamma)
$$

the union being over all finite index subgroups Γ of $\Gamma(1)$.
(II) The group G acts (good exercise: why?) on M by

$$
\left.f\right|_{k} g(z):=\operatorname{det}(g)^{k-1} f(g z) \mu(g, z)^{-k}
$$

and for any finite index subgroup Γ of $\Gamma(1)$ we have

$$
M_{k}(\Gamma)=M^{\ulcorner }=\{m \in M \mid m \cdot \gamma=m, \gamma \in \Gamma\} .
$$

Hecke operators: where from?

(I) Consider now $N \geq 1$, $\Gamma=\Gamma_{0}(N)$ and the set

$$
H_{n}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \in M_{2}(\mathbb{Z})|a d-b c=n, \operatorname{gcd}(a, N)=1, N| c\right\} .
$$

Since H_{n} is stable under left and right multiplication by Γ, it is a disjoint union of (finitely many, cf. below) double classes, say $H_{n}=\coprod_{i} \Gamma \alpha_{i} \Gamma$, and thus we have an operator

$$
T_{n}=\sum_{i}\left[\Gamma \alpha_{i} \Gamma\right]: M_{k}(N) \rightarrow M_{k}(N) .
$$

Concretely,

$$
T_{n}(f)=\left.\sum_{\gamma \in \Gamma \backslash H_{n}} f\right|_{k} \gamma
$$

Hecke operators: where from?

(I) But elementary divisors theorem easily implies that

$$
H_{n}=\coprod_{\substack{a d=n, a>0 \\
\operatorname{gcd}(a, N)=1}} \coprod_{b=0}^{d-1} \Gamma\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right),
$$

hence

$$
T_{n}(f)=\left.\sum_{\substack{a d=n, a>0 \\
\operatorname{gcd}(a, N)=1}} \sum_{b=0}^{d-1} f\right|_{k}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right),
$$

which matches the definition we initially took for T_{n}. Now we finally know that T_{n} sends modular forms to modular forms!

Hecke operators: where from?

(I) Using this description, one can also prove that Hecke operators are self-adjoint, as follows (the proof is quite tricky). If $\alpha \in G:=\mathbb{G L}_{2}(\mathbb{Q})^{+}$let $\alpha^{*}=\operatorname{det}(\alpha) \alpha^{-1}$. In a first step one proves that $\left\langle\left. f\right|_{k} \alpha, g\right\rangle=\left\langle f,\left.g\right|_{k} \alpha^{*}\right\rangle$ by a change of variable.

Hecke operators: where from?

(I) Using this description, one can also prove that Hecke operators are self-adjoint, as follows (the proof is quite tricky). If $\alpha \in G:=\mathbb{G L}_{2}(\mathbb{Q})^{+}$let $\alpha^{*}=\operatorname{det}(\alpha) \alpha^{-1}$. In a first step one proves that $\left\langle\left. f\right|_{k} \alpha, g\right\rangle=\left\langle f,\left.g\right|_{k} \alpha^{*}\right\rangle$ by a change of variable.
(II) Using also the independence of the Petersson inner product with respect to the level, it follows that if $\Gamma \alpha \Gamma=\amalg \Gamma \alpha_{i}$ then

$$
\langle f \mid[\Gamma \alpha \Gamma], g\rangle=\left\langle f,\left.\sum g\right|_{k} \alpha_{i}^{*}\right\rangle
$$

Hecke operators: where from?

(I) Using this description, one can also prove that Hecke operators are self-adjoint, as follows (the proof is quite tricky). If $\alpha \in G:=\mathbb{G L}_{2}(\mathbb{Q})^{+}$let $\alpha^{*}=\operatorname{det}(\alpha) \alpha^{-1}$. In a first step one proves that $\left\langle\left. f\right|_{k} \alpha, g\right\rangle=\left\langle f,\left.g\right|_{k} \alpha^{*}\right\rangle$ by a change of variable.
(II) Using also the independence of the Petersson inner product with respect to the level, it follows that if $\Gamma \alpha \Gamma=\amalg \Gamma \alpha_{i}$ then

$$
\langle f \mid[\Gamma \alpha \Gamma], g\rangle=\left\langle f,\left.\sum g\right|_{k} \alpha_{i}^{*}\right\rangle
$$

(III) The tricky thing is to prove that one can choose the α_{i} 's such that $\Gamma \alpha^{*} \Gamma=\coprod \Gamma \alpha_{i}^{*}$, as then one can repeat the above argument and get

$$
[\Gamma \alpha \Gamma]^{*}=\left[\Gamma \alpha^{*} \Gamma\right]
$$

This easily implies the result, coming back to the description of T_{n} in terms of double classes.

Hecke operators: where from?

(I) Elementary manipulations reduce this to showing that one can choose α_{i} such that $\Gamma \alpha \Gamma=\coprod \Gamma \alpha_{i}=\coprod \alpha_{i} \Gamma$, and simple group theory reduces this further to

$$
\mid \Gamma \backslash\lceil\alpha \Gamma|=|\Gamma \alpha \Gamma / \Gamma| .
$$

This in turn reduces to checking that $\Gamma \cap \alpha^{-1} \Gamma \alpha$ and $\Gamma \cap\left(\alpha^{*}\right)^{-1} \Gamma \alpha^{*}$ have the same co-volume, which is easy enough.

