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Goal

(I) In a first part we will prove that many interesting L-functions
attached to modular forms have analytic continuation and
functional equations, by pushing the argument for the
meromorphic continuation of real analytic Eisenstein series
(for SL2(Z)) to its limits.

(II) In a second part we introduce a class of operators on spaces
of modular forms, which play a fundamental role and allow
one to isolate a class of very nice modular forms, whose
L-functions behave like those of Dirichlet characters, for
instance they have interesting Euler product factorisations.
These modular forms have amazing arithmetic properties.
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Goal

(I) We will work at level Γ = Γ0(N), for some positive integer
N, where

Γ0(N) = {γ =

(
a b
c d

)
∈ SL2(Z)| γ ≡

(
∗ ∗
0 ∗

)
(mod N)}.

For N = 1 we have Γ0(N) = SL2(Z), and we call this simply
Γ(1).

(II) Note that Γ0(N) has finite index in Γ(1), more precisely

[Γ(1) : Γ0(N)] = N
∏
p|N

(1 + p−1).

(III) We let Mk(N) = Mk(Γ0(N)) and Sk(N) = Sk(Γ0(N)). If
N = 1 we simply write Mk ,Sk .
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Mellin transform

(I) The general machinery for analytic continuations and
functional equations is quite simple. Let Φ ∈ C∞((0,∞))
and c , v > 0 be such that

Φ(t) = O(e−ct), t →∞, Φ(t) = O(t−v−1), t → 0.

The Mellin transform of Φ is defined by

MΦ(s) =

∫ ∞
0

Φ(t)ts
dt

t
.

It is holomorphic in Re(s) > 1 + v .

(II) In practice we take Φ(t) =
∑

n≥1 ane
−nct with c > 0,

an = O(nv ). In this case we have the crucial identity

MΦ(s) = c−sΓ(s)L(s), Re(s) > 1 + v ,

L(s) :=
∑
n≥1

an
ns
, Γ(s) =

∫ ∞
0

e−xx s
dx

x
= M(− exp)(s).
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Mellin transform

(I) In practice the interesting function is s → L(s), and the
previous identity (plus classical properties of Γ, for instance
1/Γ extends to a holomorphic function on C, vanishing at
negative integers) allows one to study L(s) via MΦ(s).

(II) The Mellin transform is a version of Fourier transform, thus
one expects to recover Φ from MΦ. This can be done,
thanks to:

Theorem For all c > 1 + v we have

Φ(t) =
1

2iπ

∫
Re(s)=c

MΦ(s)t−sds.
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Mellin transform

(I) The proof is simple: letting f (x) = ecxΦ(ex), we have

MΦ(c + iu) =

∫ ∞
0

Φ(t)tc+iu dt

t
=∫

R
Φ(ex)ex(c+iu)dx =

∫
R
f (x)e ixudx .

Fourier inversion then finishes the proof.

(II) For many Φ one can extend MΦ meromorphically to C using
the same trick as the one used for Eisenstein series in the
previous lecture:

MΦ(s) =

∫ 1

0
ϕ(t)ts

dt

t
+

∫ ∞
1

ϕ(t)ts
dt

t
=

=

∫ ∞
1

(ϕ(t−1)t−s + ϕ(t)ts)
dt

t
.
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Mellin transform

(I) If ϕ(t−1) behaves well enough the integral converges
absolutely for all s ∈ C and the resulting function is
holomorphic in s. If there are k ∈ R, c ∈ {−1, 1} such that
ϕ(t−1) = ctkϕ(t), then the integral expression above gives
the functional equation

MΦ(k − s) = cMΦ(s).

This will be our main source of analytic continuation and
functional equations!



L-functions of modular forms
(I) For instance, take f =

∑
n≥1 anq

n ∈ Sk . The L-function of
f

L(s) = L(f , s) =
∑
n≥1

an
ns

and the completed L-function of f

Λ(f , s) := (2π)−sΓ(s)L(f , s)

are of fundamental importance.

(II) Note that by the above discussion Λ(f , •) is simply the
Mellin transform of

Φ(t) = f (it) =
∑
n≥1

ane
−2πnt .

Since f (−1/z) = zk f (z), we have

Φ(1/t) = iktkΦ(t) = (−1)k/2tkΦ(t).
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L-functions of modular forms

(I) We say that a function F is EBV if F is entire (i.e.
holomorphic on C) and bounded on any vertical strip
a ≤ Re(s) ≤ b. The previous discussion gives:

Theorem (Hecke) If f ∈ Sk then s → Λ(f , s) extends to a
EBV function satisfying the functional equation

Λ(k − s) = (−1)k/2Λ(s).

Thus L(f , •) extends to an entire function, having (trivial)
zeros at integers n ≤ 0.

The values L(f , n) for 1 ≤ n ≤ k − 1 have very interesting
arithmetic signification (at least for a class of modular forms
we’ll encounter later on, called eigenforms).



L-functions of modular forms

(I) Amazingly, the above properties of the L-function
characterise elements of Sk .

Theorem (Hecke’s converse theorem) Let f =
∑

n≥1 anq
n

be a holomorphic function on H such that an = O(nv ) for
some v > 0. If

Λ(s) := (2π)−sΓ(s)
∑
n≥1

an
ns

extends to an EBV function satisfying

Λ(k − s) = (−1)k/2Λ(s),

then f ∈ Sk .



L-functions of modular forms

(I) Let Φ(t) = f (it), we need to show that Φ(1/t) = iktkΦ(t),
since this implies f (−1/z) = zk f (z). As above, we have
Λ(s) = MΦ(s).

(II) The inversion formula for Mellin transforms gives for
t > 0, σ > 1 + v

Φ(t) =
1

2iπ

∫
Re(s)=σ

Λ(s)t−sds

and similarly, using the functional equation of Λ we obtain

(it)−kΦ(1/t) =
1

2iπ

∫
Re(s)=k−σ

Λ(s)t−sds.
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L-functions of modular forms

(I) To show that these two integrals are the same, integrate the
holomorphic map F (s) = Λ(s)t−s over the rectangle with
vertices (σ,T ), (k − σ,T ), (k − σ,−T ), (σ,−T ) with T
large enough. It suffices to prove that

lim
|T |→∞

∫ σ

k−σ
F (u + iT )du = 0.

(II) This is an application of the Phragmen-Lindelf principle in
complex analysis, which implies that |Λ(s)| = O(1/|s|)
uniformly in k − σ ≤ Re(s) ≤ σ.



L-functions of modular forms

(I) To show that these two integrals are the same, integrate the
holomorphic map F (s) = Λ(s)t−s over the rectangle with
vertices (σ,T ), (k − σ,T ), (k − σ,−T ), (σ,−T ) with T
large enough. It suffices to prove that

lim
|T |→∞

∫ σ

k−σ
F (u + iT )du = 0.

(II) This is an application of the Phragmen-Lindelf principle in
complex analysis, which implies that |Λ(s)| = O(1/|s|)
uniformly in k − σ ≤ Re(s) ≤ σ.



L-functions of modular forms
(I) Things are quite a bit more complicated if N > 1. The

matrix

(
0 −1
N 0

)
normalizes Γ0(N) and we obtain an

operator WN (called the Fricke involution) on Mk(N),
preserving Sk(N) and satisfying

WN f (z) = N−k/2z−k f (
−1

Nz
).

The same argument gives

Theorem If f ∈ Sk(N), then

Λ(f , s) := Ns/2π−sΓ(s)L(f , s)

extends to an EBV function satisfying

Λ(f , s) = ikΛ(WN f , k − s).



L-functions of modular forms

(I) For the interesting modular forms we’ll see later on (called
primitive forms) WN f = εf for some ε ∈ {−1, 1} and so for
these we get a nice functional equation.

(II) There is also an analogue of Hecke’s converse theorem, but
it is much more delicate to state and to prove. This is called
Weil’s converse theorem, and essentially characterises cusp
forms in terms of L-functions of various twists

f ⊗ χ :=
∑
n≥1

anχ(n)qn

of f by Dirichlet characters χ mod D, for various D. The
precise statement is very technical and skipped.
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The Petersson inner product

(I) We have already seen that cuspidal automorphic forms of
level Γ for G = SL2(R) are in L2(Γ\G ), and that any
f ∈ Sk(Γ) (with k ≥ 1) gives rise to a cuspidal automorphic
form of level Γ for G .

(II) Say Γ has finite index in Γ(1) and, for simplicity, that
−1 ∈ Γ. We get an embedding Sk(Γ) ⊂ L2(Γ\G ), inducing a
Hilbert structure on the (finite-dimensional!) vector space
Sk(Γ). Unwinding definitions, we see that up to a constant
this inner product can be expressed directly as

〈f , g〉 =
1

[Γ(1) : Γ]

∫
Γ\H

f (z)g(z)Im(z)kdµ(z).

It is independent of the choice of Γ for which both f , g are
modular of level Γ and it will play a major role in the sequel!
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The Petersson inner product

(I) More precisely, if Ff ,Fg are the automorphic forms attached
to f , g ∈ Sk(Γ) (recall that Ff (x) = f (x .i)µ(x , i)−k)

〈Ff ,Fg 〉L2(Γ\G) =

∫
Γ\G

Ff (x)Fg (x)dx =

∫
Γ\G

f (x .i)g(x .i)|µ(x , i)|−2kdx =

∫
Γ\G

f (x .i)g(x .i)Im(x .i)kdx

=

∫
Γ\H

f (z)g(z)Im(z)kdµ(z) = [Γ(1) : Γ]〈f , g〉.

The next-to-last equality follows by K -invariance on the right
of the map x → f (x .i)g(x .i)Im(x .i)k .

(II) The independence of 〈f , g〉 with respect to Γ (for which both
f , g are modular) is then trivial.
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The Rankin-Selberg method

(I) Let f , g ∈ Sk(Γ) and let

L(f ⊗ ḡ , s) = ζ(2s − 2k + 2)
∑
n≥1

anbn
ns

.

This is called the Rankin-Selberg convolution of L(f , s)
and L(g , s). It is holomorphic in Re(s) > k + 1 by the trivial
bound.

Theorem (Rankin-Selberg) The series defining L(f ⊗ ḡ , s)
converges absolutely if Re(s) > k and L(f ⊗ ḡ , •) extends
meromorphically to C. This function may have a simple pole
at s = k , where the residue is

Ress=kL(f ⊗ ḡ , •) =
3

π

(4π)k

(k − 1)!
〈f , g〉.



The Rankin-Selberg method

(I) The convergence in the theorem is highly nontrivial. Using a
hard theorem of Landau from analytic number theory,
Rankin deduced that for f ∈ Sk(Γ0(N)) we have∑

n≤x
|an(f )|2 =

3

π

(4π)k

(k − 1)!
〈f , f 〉xk + O(xk−

2
5 )

and
an(f ) = O(n

k
2
− 1

5 ).

(II) Again, we have a functional equation:

Λ(f ⊗ ḡ , s) = Λ(f ⊗ ḡ , 2k − 1− s),

where

Λ(f ⊗ ḡ , s) = (2π)−2sΓ(s)Γ(s − k + 1)L(f ⊗ ḡ , s)
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where
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The Rankin-Selberg method

(I) The proof of the theorem crucially relies on real analytic
Eisenstein series (which had a different name in lecture 6)

E (s, z) =
1

2

∑
(c,d)∈Z2K{(0,0)}

y s

|cz + d |2s
=
ζ(2s)

2

∑
gcd(c,d)=1

y s

|cz + d |2s

(II) The version at level Γ := Γ0(N) (and the cusp ∞) is

EN(s, z) =
∑

γ∈Γ∞\Γ

y s

|cz + d |2s
=

1

2

∑
gcd(c,d)=1,N|c

y s

|cz + d |2s

The Mobius inversion formula allows one to relate this to
E (s, z).
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The Rankin-Selberg method

(I) More precisely, using the Mobius function we can rewrite
(details left as an exercise)

EN(s, z) =
1

2

∑
(c,d)∈Z2K{(0,0)}

N|c

∑
e|gcd(c,d)

µ(e)
y s

|cz + d |2s

=
∑
d |N

E (s,Nz/d)(N/d)−s
∑

gcd(N,e)=d

µ(e)e−2s =

=
1

Ns
∏

p|N(1− p−2s)ζ(2s)

∑
d |N

µ(d)

d s
E (s,

Nz

d
).

(II) The properties of E (s, z) established in the previous lecture
then ensure that EN also extends meromorphically to C.
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The Rankin-Selberg method

(I) More precisely, letting

Λ(s) := π−sΓ(s)ζ(2s),

the map s → Λ(s)EN(s) has a unique pole at 1 in the region
Re(s) ≥ 1/2, this pole is simple with residue 1

2[Γ(1):Γ] . Also,
it satisfies a functional equation.

(II) It follows that EN has a single pole in Re(s) ≥ 1/2, at s = 1,
and this pole is simple, with residue 1

3π[Γ(1):Γ] . Everything in
the theorem can be easily deduced from the following crucial
identity, which holds for Re(s) > 1:

Γ(s + k − 1)

(4π)s+k−1[Γ(1) : Γ0(N)]

∑
n≥1

anbn
ns

= 〈EN(s)f , g〉,

and the properties of EN(s) explained above.
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The Rankin-Selberg method

(I) To prove the identity, we use as always the unfolding trick,
using that ϕ(z) = f (z)g(z)Im(z)k is Γ-invariant

〈EN(s)f , g〉 =
1

[Γ(1) : Γ]

∫
Γ\H

∑
γ∈Γ∞\Γ

Im(γz)sϕ(γz)dµ(z)

=
1

[Γ(1) : Γ]

∫
Γ∞\H

Im(z)sϕ(z)dµ(z) =

=
1

[Γ(1) : Γ]

∫ ∞
0

(

∫ 1

0
f (x + iy)g(x + iy)dx)yk+s−1 dy

y
.



The Rankin-Selberg method

(I) But a simple calculation shows that∫ 1

0
f (x + iy)g(x + iy)dx =

∑
n≥1

anbne
−4πny

and the result follows by standard properties of the Mellin
transform. More precisely,

f (x+iy)g(x + iy) = (
∑

ane
−2πnye2iπnx)(

∑
bme

−2πmye−2iπmx)

=
∑
m,n

anbme
−2π(m+n)ye2iπ(n−m)x

and the previous identity follows immediately.



Hecke operators

(I) Ramanujan conjectured the following amazing identity for
∆ =

∑
n≥1 τ(n)qn ∈ S12

L(∆, s) =
∏
p

1

1− τ(p)p−s + p11−2s
,

i.e. an Euler product factorization of the L-function of ∆,
just as for Dirichlet characters!

(II) Hecke proved this result by introducing an extremely
important class of operators on Mk(N) and Sk(N), called
Hecke operators. Their definition looks very miraculous,
and it is not easy at this stage to motivate it...
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Hecke operators

(I) The spaces Mk(N), Sk(N) turn out to be modules over the
gigantic polynomial ring

TN = Z[Tp| p ∈ {2, 3, 5, 7, 11, ...}]

in infinitely many variables Tp, indexed by prime numbers.

Let T(N)
N be the subring of TN generated by Tp with

gcd(p,N) = 1.

(II) We call TN (resp. T(N)
N ) the universal Hecke algebra of

level N (resp. the same away from N).
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Hecke operators

(I) What is this module structure? Brutally, we can define the
pth Hecke operator Tp on Mk(N) by

Tp(f )(z) =
1

p

p−1∑
i=0

f

(
z + i

p

)
+ χ(p)pk−1f (pz),

where χ(p) = 1 if p is prime to N and χ(p) = 0 if p | N. Be
careful that Tp really depends on the level N since χ(p)
depends on N.

(II) It is absolutely not obvious that Tp(f ) ∈ Mk(N) and Tp

sends Sk(N) into Sk(N), etc, see the slides at the end of the
lecture for the proof! The various Tp’s commute (this is very
easy using the formula above).
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Hecke operators

(I) One can define a Hecke operator Tn on Mk(N) and Sk(N) by

Tn(f )(z) =
1

n

∑
ad=n,a>0

gcd(a,N)=1

ak
d−1∑
b=0

f

(
az + b

d

)
.

Again, it is by no means obvious that Tn(f ) is in Mk(N) or
Sk(N).

(II) Let am(f ) be the mth Fourier coefficient in the q-expansion
of f at ∞. A simple computation gives

am(Tn(f )) =
∑

d |gcd(m,n),gcd(d ,N)=1

dk−1amn
d2

(f ) = an(Tm(f )).

In particular we have the key formula a1(Tn(f )) = an(f ) and

Tp(f ) =
∑
n≥0

apn(f )qn + χ(p)pk−1
∑
n≥0

an(f )qnp.
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Hecke operators

(I) Using the above formula in terms of q-expansions, it is not
difficult to check that

TmTn =
∑

d |gcd(m,n),gcd(d ,N)=1

dk−1Tmn
d2

in EndC(Mk(N)), in particular

TmTn = Tmn if gcd(m, n) = 1.

(II) The previous identity is equivalent to the following beautiful
equality of Dirichlet series with coefficients in EndC(Mk(N))∑

n≥1

Tn

ns
=
∏
p|N

1

1− Tpp−s

∏
p-N

(1− Tpp
−s + pk−1−2s)−1

=
∏
p

(1− Tpp
−s + χ(p)pk−1−2s)−1.
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Eigenforms

(I) This identity is at the heart of all Euler factorizations of
L-functions of ”nice” modular forms.

(II) We say that f ∈ Mk(N) is a TN-eigenform if f is an
eigenvector of all Tp. In this case f gives rise to a morphism
of rings

θf : TN → C, T (f ) = θf (T )f for T ∈ T.

An identical discussion applies to T(N)
N . Obviously any

TN -eigenform is a T(N)
N -eigenform, but the converse fails

badly when N > 1!
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Eigenforms

(I) Note that if f is a TN -eigenform, then writing Tn(f ) = λnf
we have

an(f ) = a1(Tn(f )) = λna1(f ),

and thus a1(f ) 6= 0 (since f 6= 0) and we can normalise f
such that a1(f ) = 1, in which case Tn(f ) = anf for all n.
We say that f is a normalized eigenform in this case.

(II) The Dirichlet series identity for the Tn’s yields in this case

L(f , s) =
∏
p

1

1− app−s + χ(p)pk−1−2s
,

thus the L-function of a normalized TN -eigenform has a nice
Euler factorization!
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Eigenforms

(I) For instance, consider S12. If f ∈ S12, then f /∆ ∈ M0 = C,
thus S12 is one-dimensional and ∆ is necessarily a
normalized T1-eigenform and we obtain that L(∆, s) has an
Euler factorisation as conjectured by Ramanujan! In
particular, if we write

q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn,

the sequence τ(n) is multiplicative and

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1)

for all primes p and all n ≥ 1.



Eigenforms

(I) Thus if f ∈ Sk is a T1-eigenform, and if we factor

X 2 − apX + pk−1 = (X − αf ,p)(X − βf ,p),

then

L(f , s) =
∏
p

1

(1− αf ,pp−s)(1− βf ,pp−s)
.

(II) If f , g are eigenforms, a long but simple calculation shows
that L(f ⊗ ḡ , s) also has an Euler factorization, with

Lp(f ⊗ ḡ , s) =
1

(1− αf ,pβg ,pp−s)(1− αf ,pαg ,pp−s)

•
1

(1− βf ,pαg ,pp−s)(1− βf ,pβg ,pp−s)
.
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Eigenforms

(I) A fundamental and quite subtle (not formal!) result is that
Hecke operators interact well with the Petersson inner
product:

Theorem For n prime to N the operator Tn is self-adjoint
on Sk(N), and so is WN . For general n the adjoint of Tn is
W−1

N TnWN . In particular, if gcd(n,N) = 1 then Tn and WN

commute.

(II) The spectral theorem combined with the previous one show

that Sk(N) has an orthogonal basis consisting of T(N)
N (but

not TN)-eigenforms.
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Atkin-Lehner theory

(I) Things are however much more subtle for T(N)
N -eigenforms:

we can no longer assume that a1(f ) 6= 0, and we have no
control at primes dividing N.

(II) If f is a T(N)
N -eigenform with a1(f ) = 0, then as above we

get an(f ) = 0 for all n prime to N. The next result is the
heart of the Atkin-Lehner theory

Theorem (Atkin-Lehner’s main lemma) If f ∈ Sk(N)
satisfies an(f ) = 0 for all n prime to a given integer D, then
f (z) =

∑
p|N gp(pz) for some gp ∈ Sk(N/p).

The converse is trivial! The classical proof is not very
enlightening (but only 4 pages long!), while the automorphic
proof, while conceptual and enlightening, is quite long.
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Atkin-Lehner theory

(I) For each pair (d ,M) of positive integers with dM | N we

have an injective morphism of T(N)
N -modules

ι∗ = ι∗d ,M : Sk(M)→ Sk(N), f → (z → f (dz)).

(II) In particular, if dM | N and f ∈ Sk(M) is a T(M)
M -eigenform,

then z → f (dz) is a T(N)
N -eigenform having the same

Tp-eigenvalue as f for all p prime to N! Thus

T(N)
N -eigenspaces can have big dimension, contrary to

TN -eigenspaces.
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Atkin-Lehner theory

(I) The old and new subspaces of Sk(N) are defined by

Sk(N)old =
∑

dM|N,M 6=N

ι∗d ,M(Sk(M)), Sk(N)new = (Sk(N)old)⊥.

(II) One can check by direct computation that Sk(N)old is stable
under TN and by the Fricke involution WN . It follows that
Sk(N)new is also stable under TN and WN .

(III) The previous deep theorem ensures that whenever
f ∈ Sk(N)new is a T(N)-eigenform, we necessarily have
a1(f ) 6= 0, thus we can normalise a1(f ) = 1. We call such f
a newform or primitive form.
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Atkin-Lehner theory
(I) We can now state the main results of Atkin-Lehner theory.

Theorem (Atkin-Lehner)

a) (multiplicity one) T(N)
N -eigenspaces in Sk(N)new are

one-dimensional and generated by primitive forms.

b) Each primitive form is a TN -eigenform and an eigenvector
of WN , thus L(f , s) has an Euler factorization and Λ(f , s)
has a nice functional equation.

c) Sk(N)new has a basis consisting of primitive forms.

One also gets a decomposition of T(N)
N -modules

Sk(N) =
⊕
dM|N

ι∗d ,M(Sk(M)new) '
⊕
dM|N

Sk(M)new.



Atkin-Lehner theory

(I) The proof of the following deep and beautiful strong
multiplicity one theorem crucially uses L-functions and
estimates on the growth of the coefficients of cusp forms
obtained via Rankin-Selberg:

Theorem (Atkin-Lehner) If f ∈ Sk(M), g ∈ Sk(N) are
primitive forms with ap(f ) = ap(g) for all but finitely many
primes p, then M = N and f = g .



Two amazing theorems

(I) Here is the first amazing theorem:

Theorem (Shimura) If f =
∑

n≥1 anq
n ∈ Sk(N) is

primitive, then
Q(f ) := Q(a1, a2, ...)

is a totally real number field in which an are algebraic
integers. Moreover, for any σ ∈ Aut(C) the holomorphic
function f σ =

∑
n≥1 σ(an)qn is a primitive form in Sk(N).

This is not too hard for N = 1: in this case if d = dimMk

one easily checks that ∆iE
3(d−1−i)
4 Ek−12d+12 for 0 ≤ i < d

form a basis of Mk and these forms have integer Fourier
coefficients. Using them, one checks that the subspace
Mk(Z) of Mk of forms with integer q-expansions is a lattice
in Mk , clearly stable under Hecke operators, and the result
follows easily.



Two amazing theorems

(I) And here is one jewel of mathematics:

Theorem (Shimura, Deligne, Deligne-Serre, Ribet) Let
f =

∑
n≥1 anq

n ∈ Sk(N) be a primitive form and let λ be a
place of K = Qf above some prime number `. There is a
continuous irreducible representation

ρf ,λ : Gal(Q/Q)→ GL2(Kλ)

such that for all primes p not dividing `N the representation
ρf ,λ is trivial on the inertia group at p and

det(X − ρf ,λ(Frobp)) = X 2 − apX + pk−1.

Moreover, the Ramanujan-Petersson conjecture holds:

|ap| ≤ 2p
k−1

2 .



Hecke operators: where from?

(I) The mechanism underlying the construction of Hecke
operators is very general, but quite abstract. Suppose that G
is a group acting A-linearly on the right on some A-module
M, where A is a commutative ring.

(II) Let Γ be a subgroup of G with the property that Γ\ΓgΓ is a
finite set for all g ∈ G . This is equivalent to saying that
Γ ∩ g−1Γg has finite index in Γ for all g ∈ G .

(III) Each g ∈ G gives rise to an operator

[ΓgΓ] : MΓ → MΓ, m.[ΓgΓ] =
∑

x∈Γ\ΓgΓ

m.x ,

depending only on ΓgΓ.
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Hecke operators: where from?

(I) Let T(G , Γ) = A[Γ\G/Γ] be the free A-module on double
classes ΓgΓ with g ∈ G . We have a natural bijection

HomA[G ](A[Γ\G ],M) ' MΓ,

in particular taking M = A[Γ\G ] with the obvious action of
G

EndA[G ](A[Γ\G ]) ' A[Γ\G ]Γ ' A[Γ\G/Γ].

(II) Since EndA[G ](A[Γ\G ]) has a natural ring structure, we get

one on T(G , Γ), and a T(G , Γ)-module structure on MΓ.
This module structure is induced by the operators [ΓgΓ].
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Hecke operators: where from?

(I) An example of such a situation is G = GL2(Q)+ and Γ any
finite index subgroup of Γ(1). We can take A = C (or Z)
and (for a fixed k)

M =
⋃
Γ

Mk(Γ)

the union being over all finite index subgroups Γ of Γ(1).

(II) The group G acts (good exercise: why?) on M by

f |kg(z) := det(g)k−1f (gz)µ(g , z)−k

and for any finite index subgroup Γ of Γ(1) we have

Mk(Γ) = MΓ = {m ∈ M|m.γ = m, γ ∈ Γ}.
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Hecke operators: where from?

(I) Consider now N ≥ 1, Γ = Γ0(N) and the set

Hn = {
(
a 0
0 d

)
∈ M2(Z)| ad−bc = n, gcd(a,N) = 1,N | c}.

Since Hn is stable under left and right multiplication by Γ, it
is a disjoint union of (finitely many, cf. below) double
classes, say Hn =

∐
i ΓαiΓ, and thus we have an operator

Tn =
∑
i

[ΓαiΓ] : Mk(N)→ Mk(N).

Concretely,

Tn(f ) =
∑

γ∈Γ\Hn

f |kγ.



Hecke operators: where from?

(I) But elementary divisors theorem easily implies that

Hn =
∐

ad=n,a>0
gcd(a,N)=1

d−1∐
b=0

Γ

(
a b
0 d

)
,

hence

Tn(f ) =
∑

ad=n,a>0
gcd(a,N)=1

d−1∑
b=0

f |k
(
a b
0 d

)
,

which matches the definition we initially took for Tn. Now
we finally know that Tn sends modular forms to modular
forms!



Hecke operators: where from?
(I) Using this description, one can also prove that Hecke

operators are self-adjoint, as follows (the proof is quite
tricky). If α ∈ G := GL2(Q)+ let α∗ = det(α)α−1. In a first
step one proves that 〈f |kα, g〉 = 〈f , g |kα∗〉 by a change of
variable.

(II) Using also the independence of the Petersson inner product
with respect to the level, it follows that if ΓαΓ =

∐
Γαi then

〈f |[ΓαΓ], g〉 = 〈f ,
∑

g |kα∗i 〉

(III) The tricky thing is to prove that one can choose the αi ’s
such that Γα∗Γ =

∐
Γα∗i , as then one can repeat the above

argument and get

[ΓαΓ]∗ = [Γα∗Γ].

This easily implies the result, coming back to the description
of Tn in terms of double classes.
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Hecke operators: where from?

(I) Elementary manipulations reduce this to showing that one
can choose αi such that ΓαΓ =

∐
Γαi =

∐
αiΓ, and simple

group theory reduces this further to

|Γ\ΓαΓ| = |ΓαΓ/Γ|.

This in turn reduces to checking that Γ ∩ α−1Γα and
Γ ∩ (α∗)−1Γα∗ have the same co-volume, which is easy
enough.


